Course Content
Past Papers
About Lesson

One-to-One Grinds

If you feel that you would not be confident if this topic appeared on your exam, we suggest booking one of our one-to-one grinds!

Complex Numbers

NOTE: Clicking an entry in the right column will take you directly to that question!

(BLUE = Paper 1, RED = Paper 2)

Since 2015, the following subtopic... Has explicitly appeared in...

Algebra Manipulation

Simplify Fractions

Argand Diagrams

Conjugate Roots Theorem

Polar/Cartesian Conversion

De Moivre's Theorem

2022 Paper 1 Question 3

(a) \(z=6+2i\), where \(i^2=-1\).

(i) Show that \(z-iz=8-4i\).

(ii) Show that \(|z|^2+|iz|^2=|z-iz|^2\).

(iii) The circle \(c\) passes through the points \(z\), \(iz\) and \(0\), as shown in the diagram below (not to scale). \(z\) and \(iz\) are endpoints of a diameter of the circle.

Find the area of the circle \(c\) in terms of \(\pi\).

cziz0ReIm
Answer

(i) The answer is already in the question!

(ii) The answer is already in the question!

(iii) \(20\pi\mbox{ square units}\)

Solution

(i)

\begin{align}z-iz&=(6+2i)-i(6+2i)\\&=6+2i-6i-2i^2\\&=6-4i+2\\&=8-4i\end{align}

as required.

(ii)

\begin{align}iz&=i(6+2i)\\&=6i+2i^2\\&=-2+6i\end{align}

\begin{align}|z|^2+|iz|^2=|z-iz|^2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}(6^2+2^2)+(2^2+6^2)=8^2+4^2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}36+4+4+36=64+16\end{align}

\begin{align}\downarrow\end{align}

\begin{align}80=80\end{align}

Therefore, the relation is true.

(iii)

\begin{align}r&=\frac{|z-iz|}{2}\\&=\frac{\sqrt{8^2+4^2}}{2}\\&=\frac{\sqrt{80}}{2}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}A&=\pi r^2\\&=\pi\left(\frac{\sqrt{80}}{2}\right)^2\\&=\pi\left(\frac{80}{4}\right)\\&=20\pi\mbox{ square units}\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) \((\sqrt{3}-i)^9\) can be written in the form \(a+ib\), where \(a,b\in\mathbb{Z}\) and \(i^2=-1\).

Use de Moivre’s Theorem to find the value of \(a\) and the value of \(b\).

Answer

\(a=0\) and \(b=512\)

Solution

Modulus

\begin{align}r&=\sqrt{(\sqrt{3})^2+1^2}\\&=\sqrt{3+1}\\&=\sqrt{4}\\&=2\end{align}

\[\,\]

Reference Angle

\begin{align}\tan A=\frac{1}{\sqrt{3}}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}A&=\tan^{-1}\left(\frac{1}{\sqrt{3}}\right)\\&=30^{\circ}\end{align}

\[\,\]

Argument

Fourth Quadrant

\begin{align}\downarrow\end{align}

\begin{align}\theta&=360^{\circ}-30^{\circ}=330^{\circ}\end{align}

\[\,\]

Polar Form

\begin{align}\sqrt{3}-i=2(\cos330^{\circ}+i\sin330^{\circ})\end{align}

\[\,\]

De Moivre’s Theorem

\begin{align}(\sqrt{3}-i)^9&=2^9[\cos9(330^{\circ})+i\sin9(330^{\circ})]\\&=512[\cos2970^{\circ}+i\sin2970^{\circ}]\\&=512(0+i)\\&=0+512i\end{align}

\begin{align}\downarrow\end{align}

\(a=0\) and \(b=512\)

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2021 Paper 1 Question 1

(a) \(\dfrac{(4-2i)}{(2+4i)}=0+ki\), where \(k\in\mathbb{Z}\), and \(i^2=-1\). Find the value of \(k\).

Answer

\(k=-1\)

Solution

\begin{align}\frac{(4-2i)}{(2+4i)}&=\frac{4-2i}{2+4i}\times\frac{2-4i}{2-4i}\\&=\frac{8-16i-4i+8i^2}{4-8i+8i-16i^2}\\&=\frac{-20i}{20}\\&=-i\end{align}

\begin{align}\downarrow\end{align}

\begin{align}k=-1\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) Find \(\sqrt{-5+12i}\).
Give both of your answers in the form \(a+bi\), where \(a,b\in\mathbb{R}\).

Answer

\(2+3i\) and \(-2-3i\)

Solution

\begin{align}\sqrt{-5+12i}=a+bi\end{align}

\begin{align}\downarrow\end{align}

\begin{align}-5+12i=(a+bi)^2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}-5+12i=(a^2-b^2)+2abi\end{align}

\begin{align}\downarrow\end{align}

\begin{align}-5=a^2-b^2\end{align}

\begin{align}12=2ab\end{align}

\begin{align}\downarrow\end{align}

\begin{align}a^2-b^2=-5\end{align}

\begin{align}a=\frac{6}{b}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\left(\frac{6}{b}\right)^2-b^2=-5\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\frac{36}{b^2}-b^2=-5\end{align}

\begin{align}\downarrow\end{align}

\begin{align}36-b^4=-5b^2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}b^4-5b^2-36=0\end{align}

 \begin{align}\downarrow\end{align}

\begin{align}(b^2+4)(b^2-9)=0\end{align}

and therefore \(b=\pm 3\) (since \(b\in\mathbb{R}\)). Hence

\begin{align}a&=\frac{6}{b}\\&=\frac{6}{\pm3}\\&=\pm2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\sqrt{-5+12i}=2+3i\end{align}

or

\begin{align}\sqrt{-5+12i}=-2-3i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(c) Use De Moivre’s theorem to find the three roots of \(z^3=-8\).
Give each of your answers in the form \(a+bi\), where \(a,b\in\mathbb{R}\), and \(i^2=-1\).

Answer

\(1+\sqrt{3}i\), \(-2\) and \(1-\sqrt{3}i\)

Solution

\begin{align}r=8\end{align}

and

\begin{align}\theta=\pi+2\pi n\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z^3=8[\cos(\theta+2\pi n)+i\sin(\theta+2\pi n)]\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z&=8^{1/3}[\cos(\theta+2\pi n)+i\sin(\theta+2\pi n)]^{1/3}\\&=2\left[\cos\left(\frac{\pi+2\pi n}{3}\right)+i\sin\left(\frac{2\pi n}{3}\right)\right]\end{align}

\[\,\]

\(\mathbf{n=0}\)

\begin{align}z&=2\left[\cos\left(\frac{\pi+2\pi (0)}{3}\right)+i\sin\left(\frac{\pi+2\pi (0)}{3}\right)\right]\\&=1+\sqrt{3}i\end{align}

\[\,\]

\(\mathbf{n=1}\)

\begin{align}z&=2\left[\cos\left(\frac{\pi+2\pi (1)}{3}\right)+i\sin\left(\frac{\pi+2\pi (1)}{3}\right)\right]\\&=-2\end{align}

\[\,\]

\(\mathbf{n=2}\)

\begin{align}z&=2\left[\cos\left(\frac{\pi+2\pi (2)}{3}\right)+i\sin\left(\frac{\pi+2\pi (2)}{3}\right)\right]\\&=1-\sqrt{3}i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2020 Paper 1 Question 2

(a) Find the two complex numbers \(z_1\) and \(z_2\) that satisfy the following simultaneous equations, where \(i^2=-1\):

\begin{align}iz_1&=-4+3i\\3z_1-z_2&=11+17i\end{align}

Write your answers in the form \(a+bi\) where \(a,b\in\mathbb{Z}\).

Answer

\(z_1=3+4i\) and \(z_2=-2-5i\)

Solution

\begin{align}iz_1=-4+3i\end{align}

\begin{align}\downarrow\end{align}

\begin{align}i(iz_1)=i(-4+3i)\end{align}

\begin{align}\downarrow\end{align}

\begin{align}-z_1=-4i+3i^2\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z_1=3+4i\end{align}

and

\begin{align}3(3+4i)-z_2=11+17i\end{align}

\begin{align}\downarrow\end{align}

\begin{align}9+12i-z_2=11+17i\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z_2&=-11-17i+9+12i\\&=-2-5i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) The complex numbers \(3+2i\) and \(5-i\) are the first two terms of a geometric sequence.

(i) Find \(r\), the common ratio of the sequence.

Write your answer in the form \(a+bi\) where \(a,b,\in\mathbb{Z}\).

(ii) Use de Moivre’s Theorem to find \(T_9\), the ninth term of the sequence.
Write your answer in the form \(a+bi\) where \(a,b,\in\mathbb{Z}\).

Answer

(i) \(r=1-i\)

(ii) \(48+32i\)

Solution

(i)

\begin{align}r&=\frac{T_2}{T_1}\\&=\frac{5-i}{3+2i}\\&=\frac{5-i}{3+2i}\times\frac{3-2i}{3-2i}\\&=\frac{15-10i-3i+2i^2}{9-6i+6i-4i^2}\\&=\frac{13-13i}{13}\\&=1-i\end{align}

(ii)

\begin{align}T_n=ar^{n-1}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}T_9&=ar^8\\&=(3+2i)(1-i)^8\end{align}

For \((1-i)\), the modulus is

\begin{align}r&=\sqrt{1^2+(-1)^2}\\&=\sqrt{2}\end{align}

and, since it is in the fourth quadrant, the argument is

\begin{align}\theta&=2\pi-\tan^{-1}\left(\frac{1}{1}\right)\\&=2\pi-\frac{\pi}{4}\\&=\frac{7\pi}{4}\end{align}

Therefore, we have

\begin{align}T_9&=(3+2i)(1-i)^8\\&=(3+2i)\left[\sqrt{2}\left[\cos\left(\frac{7\pi}{4}\right)+i\sin\left(\frac{7\pi}{4}\right)\right]\right]^8\\&=(3+2i)(\sqrt{2})^8\left[\cos\left(\frac{7\pi(8)}{4}\right)+i\sin\left(\frac{7\pi(8)}{4}\right)\right]\\&=(3+2i)(16)(\cos14\pi+i\sin14\pi)\\&=(3+2i)(16)(1+0i)\\&=48+32i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2019 Paper 1 Question 5

(a) \(3+2i\) is a root of \(z^2+pz+q=0\), where \(p,q\in\mathbb{R}\), and \(i^2=-1\).
Find the value of \(p\) and the value of \(q\).

Answer

\(p=-6\) and \(q=13\)

Solution

\begin{align}(3+2i)^2+p(3+2i)+q=0\end{align}

\begin{align}\downarrow\end{align}

\begin{align}9+12i-4+3p+2pi+q=0\end{align}

\begin{align}\downarrow\end{align}

\begin{align}(5+3p+q)+(12+2p)i=0\end{align}

\begin{align}\downarrow\end{align}

\begin{align}(5+3p+q)+(12+2p)i=0\end{align}

\begin{align}\downarrow\end{align}

We therefore have the following two equations for two unknowns:

\begin{align}5+3p+q=0\end{align}

\begin{align}12+2p=0\end{align}

\begin{align}\downarrow\end{align}

\begin{align}5+3p+q=0\end{align}

\begin{align}p=-6\end{align}

\begin{align}\downarrow\end{align}

\begin{align}5+3(-6)+q=0\end{align}

\begin{align}p=-6\end{align}

\begin{align}\downarrow\end{align}

\begin{align}q=13\end{align}

\begin{align}p=-6\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b)

(i) \(v=2-2\sqrt{3}i\). Write \(v\) in the form \(r(\cos\theta+i\sin\theta)\), where \(r\in\mathbb{R}\) and \(0\leq\theta\leq2\pi\).

(ii) Use your answer to part (b)(i) to find the two possible values of \(w\), where \(w^2=v\).
Give your answers in the form \(a+ib\), where \(a,b\in\mathbb{R}\).

Answer

(i) \(v=4\left[\cos\dfrac{5\pi}{3}+i\sin\dfrac{5\pi}{3}\right]\)

(ii) \(w=-\sqrt{3}+i\) and \(w=\sqrt{3}-i\)

Solution

(i)

Modulus

\begin{align}r&=\sqrt{2^2+(-2\sqrt{3})^2}\\&=\sqrt{4+12}\\&=\sqrt{16}\\&=4\end{align}

\[\,\]

Argument

Reference Angle:

\begin{align}A&=\tan^{-1}\left(\frac{2\sqrt{3}}{2}\right)\\&=\frac{\pi}{3}^{\circ}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\theta&=2\pi-\frac{\pi}{3}\\&=\frac{\pi}{3}\end{align}

\[\,\]

Polar Form

\begin{align}v=4\left[\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right]\end{align}

(ii)

\begin{align}w&=\pm\left[4\left(\cos\frac{5\pi}{3}+i\sin\frac{5\pi}{3}\right)\right]^{1/2}\\&=\pm2\left[\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6}\right]\\&=\pm(-\sqrt{3}+i)\end{align}

\begin{align}\downarrow\end{align}

\(w=-\sqrt{3}+i\) and \(w=\sqrt{3}-i\)

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2018 Paper 1 Question 4

(a) Prove, using induction, that if \(n\) is a positive integer then

\((\cos\theta+i\sin\theta)^n=\cos(n\theta)+i\sin(n\theta)\), where \(i^2=-1\).

Answer

The answer is already in the question!

Solution

For \(n=1\), the formula states that

\begin{align}(\cos\theta+i\sin\theta)^1=\cos(1\theta)+i\sin(1\theta)\end{align}

\begin{align}\cos\theta+i\sin\theta=\cos\theta+i\sin\theta\end{align}

and therefore it is true for \(n=1\).

Hence, let us assume that it is true for \(n=k\), i.e. that

\begin{align}(\cos\theta+i\sin\theta)^k=\cos(k\theta)+i\sin(k\theta)\end{align}

Using this assumption, we now wish to prove that it is also true for \(n=k+1\), i.e. that

\begin{align}(\cos\theta+i\sin\theta)^{k+1}=\cos[(k+1)\theta]+i\sin[(k+1)\theta]\end{align}

Let us look at the left hand side:

\begin{align}(\cos\theta+i\sin\theta)^{k+1}&=(\cos\theta+i\sin\theta)^{k}(\cos\theta+i\sin\theta)^{1}\\&=[\cos(k\theta)+i\sin(k\theta)](\cos\theta+i\sin\theta)\theta]\\&=[\cos(k\theta)-\sin(k\theta)\sin\theta]+i[\cos(k\theta)\sin\theta+\cos\theta\sin(k\theta)]\\&=\cos[(k+1)\theta]+i\sin[(k+1)\theta]\end{align}

which is indeed the right hand side.

Therefore, the formula is true for all positive integers \(n\).

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) Hence, or otherwise, find \(\left(-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}i\right)^3\) in its simplest form.

Answer

\(1\)

Solution

Modulus

\begin{align}r&=\sqrt{\left(-\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}\\&=\sqrt{\frac{1}{4}+\frac{3}{4}}\\&=\sqrt{1}\\&=1\end{align}

\[\,\]

Argument

\begin{align}\tan\theta&=-\frac{\sqrt{3}/2}{1/2}\\&=-\sqrt{3}\end{align}

Reference Angle:

\begin{align}\tan A=\sqrt{3}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}A&=\frac{\pi}{3}\mbox{ rad}\end{align}

As \(\theta\) is in the second quadrant:

\begin{align}\theta&=\pi-A\\&=\pi-\frac{\pi}{3}\\&=\frac{2\pi}{3}\end{align}

\[\,\]

Polar Form

\begin{align}-\frac{1}{2}+\frac{\sqrt{3}}{2}i&=1\left[\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right]\\&=\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}i\right)^3&=\left[\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right)\right]^3\\&=\cos(3)\left(\frac{2\pi}{3}\right)+i\sin(3)\left(\frac{2\pi}{3}\right)\\&=\cos(2\pi)+i\sin(2\pi)\\&=1+0i\\&=1\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2017 Paper 1 Question 2

\(z=-\sqrt{3}+i\), where \(i^2=-1\).

(a) Use De Moivre’s Theorem to write \(z^4\) in the form ܽ\(a+b\sqrt{c}i\), where ܽ\(a\), \(b\), and \(c\in\mathbb{Z}\).

Answer

\(z^4=-8-8\sqrt{3}i\)

Solution

Modulus

\begin{align}r&=\sqrt{(-\sqrt{3})^2+1^2}\\&=\sqrt{3+1}\\&=2\end{align}

\[\,\]

Argument

\begin{align}\tan\theta=-\frac{1}{\sqrt{3}}\end{align}

Reference Angle:

\begin{align}\tan A=\frac{1}{\sqrt{3}}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}A=\frac{\pi}{6}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\theta&=\pi-\frac{\pi}{6}\\&=\frac{5\pi}{6}\end{align}

\[\,\]

Polar Form

\begin{align}z=2(\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z^4&=2^4(\cos\left(\frac{5(4)\pi}{6}\right)+i\sin\left(\frac{5(4)\pi}{6}\right)\\&=-8-8\sqrt{3}i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) The complex number \(w\) is such that \(|w|=3\) and \(w\) makes an angle of \(30^{\circ}\) with the positive sense of the real axis. If \(t=zw\), write \(t\) in its simplest form.

Answer

\(t=-6\)

Solution

\begin{align}w=3\left[\cos\left(\frac{\pi}{6}\right)+i\sin\left(\frac{\pi}{6}\right)\right]\end{align}

\begin{align}\downarrow\end{align}

\begin{align}t&=zw\\&=2\left[\cos\left(\frac{5\pi}{6}\right)+i\sin\left(\frac{5\pi}{6}\right)\right]\times3\left[\cos\left(\frac{\pi}{6}\right)+i\sin\left(\frac{\pi}{6}\right)\right]\\&=6(\cos\pi+i\sin\pi)\\&=6(-1+0i)\\&=-6\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2016 Paper 1 Question 1

(a) \((-4+3i)\) is one root of the equation \(az^2+bz+c=0\), where \(a,b,c\in\mathbb{R}\), and \(i^2=-1\).
Write the other root.

Answer

\(-4-3i\)

Solution

\(-4-3i\)

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) Use De Moivre’s Theorem to express \((1+i)^8\) in its simplest form.

Answer

\(16\)

Solution

\begin{align}z=1+i\end{align}

\[\,\]

Modulus

\begin{align}r&=\sqrt{1^2+1^2}\\&=\sqrt{2}\end{align}

\[\,\]

Argument

\begin{align}\tan\theta&=\frac{1}{1}\\&=1\end{align}

\begin{align}\downarrow\end{align}

\begin{align}\theta&=\tan^{-1}(1)\\&=\frac{\pi}{4}\end{align}

\[\,\]

Polar Form

\begin{align}(i+1)=\sqrt{2}\left[\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right]\end{align}

\begin{align}\downarrow\end{align}

\begin{align}(i+1)^8&=\sqrt{2}^8\left[\cos\left(\frac{\pi}{4}\right)+i\sin\left(\frac{\pi}{4}\right)\right]^8\\&=16\left[\cos\left(\frac{8\pi}{4}\right)+i\sin\left(8\frac{\pi}{4}\right)\right]\\&=16[\cos(2\pi)+i\sin(2\pi)]\\&=16(1=)i)\\&=16\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(c) \((1+i)\) is a root of the equation \(z^2+(-2+i)z+3-i=0\).
Find its other root in the form \(m+ni\), where \(m,n\in\mathbb{R}\), and \(i^2=-1\).

Answer

\(1-2i\)

Solution

\begin{align}z&=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\&=\frac{-(-2+i)\pm\sqrt{(-2+i)^2-4(1)(3-i)}}{2(1)}\\&=\frac{2-i\pm\sqrt{4-4i+i^2-12+4i}}{2}\\&=\frac{2-i\pm\sqrt{-9}}{2}\\&=\frac{2-i\pm3i}{2}\end{align}

\begin{align}\downarrow\end{align}

\(z=1-2i\) or \(z=1+i\)

Therefore, the other root is \(z=1-2i\).

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

2015 Paper 1 Question 4

(a) The complex numbers \(z_1\), \(z_2\) and \(z_3\) are such that \(\dfrac{2}{z_1}=\dfrac{1}{z_2}+\dfrac{1}{z_3}\), \(z_2=2+3i\) and \(z_3=3-2i\), where \(i^2=-1\). Write \(z_1\) in the form \(a+bi\), where \(a,b\in\mathbb{Z}\).

Answer

\(5+i\)

Solution

\begin{align}\frac{2}{z_1}&=\frac{1}{2+3i}+\frac{1}{3-2i}\\&=\frac{3-2i+2+3i}{(2+3i)(3-2i)}\\&=\frac{5+i}{6-4i+9i-6i^2}\\&=\frac{5+i}{12+5i}\end{align}

\begin{align}\downarrow\end{align}

\begin{align}z_1&=\frac{24+10i}{5+i}\\&=\frac{24+10i}{5+i}\times\frac{5-i}{5-i}\\&=\frac{120-24i+50i-10i^2}{25-5i+5i-i^2}\\&=\frac{130+26i}{26}\\&=5+i\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!

(b) Let \(\omega\) be a complex number such that \(w^n=1\), \(\omega\neq 1\) and \(S=1+\omega+\omega^2+…+\omega^{n-1}\). Use the formula for the sum of a finite geometric series to write the value of \(S\) in its simplest form.

Answer

\(S=0\)

Solution

\begin{align}a=1&&r=\omega\end{align}

\begin{align}\downarrow\end{align}

\begin{align}S&=\frac{a(1-r^n)}{1-r}\\&=\frac{1(1-\omega^n)}{1-\omega}\\&=\frac{1(1-1)}{1-\omega}\\&=0\end{align}

Video Walkthrough
Our Video Walkthroughs are in the final stages of editing and will go live during Summer 2023.
In the meantime, if you feel that you would not be confident if this question (or similar) appeared on your exam, we suggest booking one of our one-to-one grinds!
Bookmark